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Abstract. Size correlations in a sequential fragmentation process originate from the correlations
the progeny of a single fragmentation event necessarily have. A multidimensional equation
describing the binary fragmentation of a unit segment is formulated. The fragments are assumed
to keep their positions with respect to the original segment. If the fragmentation rate is
not dependent on fragment size the distributionfn(x1, x2, . . . , xn) for n successive adjacent
fragments is shown to asymptotically approach ann-dimensional log-normal distribution.
Explicit forms of the asymptotic distribution and the correlations are given in terms of the
parameters ofB(y → x), the probability that a fragmentation event with parent sizey produces
progeny sizex.

1. Introduction

Fragmentation processes are ubiquitous in physics and are encountered in such fields as
dispersion, turbulent mixing, polymer chemistry, crushing and grinding of minerals, aerosol
behaviour, nuclear physics and astronomy (Ramkrishna 1985, Mekijan and Lee 1991). The
associated linear fragmentation equation has been extensively studied and various analytical
solutions have been obtained (McGrady and Ziff 1987, Ziff 1991, Hassan and Rodgers 1995,
Cheng and Redner 1990). For a fragment size independent fragmentation rate the solutions
are known or suspected to approach asymptotically a lognormal distribution (Epstein 1947,
Delannayet al 1996, Bakeret al 1992). The log-normality is expected to be largely
independent of the form of the probabilityB(y → x) for producingx-fragments from
y-fragments. This makes the lognormal distribution particularly suitable for modelling
empirical fragment size distributions.

If there is no mass loss then in a fragmentation event the sizes of the progeny fragments
are necessarily correlated as their sum must equal the size of the parent fragment. For
binary fragmentation the correlations are deterministic as the sizes of the progeny for a
parent sizey are x and y − x. If the fragments are free to move around the correlations
have little relevance. However, if they have fixed positions, a specific geometry or cellular
structure is generated and correlations between a fragment and its neighbours are expected.
This situation is also often encountered in fragmentation phenomena, especially in the
fragmentation of solids where generation of crack surfaces and the associated change in
material properties are often in question.
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2. The distribution of adjacent fragments

2.1. Preliminaries

The model to be presented generalizes the usual population balance or rate equation approach
to describe arrangements of adjacent fragments. This is done in an iterative fashion starting
from a theory of two adjacent fragments. An unit segment is fragmented sequentially into
N(t) fragments that are assumed to keep their positions. The distribution of a random vector
(X, Y ) whereX and Y are the sizes of adjacent fragments isf (x, y)dx dy = Prob(x 6
X < x+dx andy 6 Y < y+dy). The distribution is assumed to by symmetric so that the
ordinary fragment size distribution isf (x) = ∫ 1

0 dy f (x, y) and the conditional distribution

f (y|X = x) = f (x, y)

f (x)
. (1)

The distributionfn(x1, x2, . . . , xn) for n successive adjacent fragments is defined as an
obvious generalization. The population balance equation for the distributionf (x) is

∂

∂t
Nf (x) = N2

∫ 1

x

dz α(z)f (z)B(z→ x)−Nα(x)f (x) (2)

where α(x, t) is the fragmentation rate andB(z → x) dx is the probability for a
fragmentation event with parent sizez to produce progeny sizex. It is assumed thatα = 1
and that the fragmentation pattern is size independent orB(z → x) dx ≡ B(x/z)(dx/z).
Here B(y) dy is a probability distribution defined for 06 y 6 1. Applying to (2) the
transform

G(p) =
∫ 1

0
dx xpf (x) D(p) =

∫ 1

0
dx xpB(x) (3)

one obtains

∂

∂t
NG(p) = N2G(p)D(p)−G(p) = NG(p)(2K(p)+ 1) (4)

whereK(p) = D(p)−1. It is seen thatG(p) is the Laplace transform of the distribution of
ln(1/X) or the moment generating function of the distribution of ln(X); thus a convolution
property derivable from that of Laplace transforms applies. WithG(0) = 1 andK(0) = 0
two equations are obtained from (4),

∂

∂t
G(p) = 2K(p)G(p)

dN

dt
= N (5)

and the solution for any initial distributionf0(x) with the transformG0(p) at t = 0 is

G(p) = G0(p) e2K(p)t N = N0 et . (6)

It can be assumed thatG0(p) = 1 andN0 = 1 since the complete solution can always be
derived as a convolution integral. The solutionf (x) for anyB(x) can formally be written
down as a series where thekth term contains ak-fold convolution integral; for certain
choices ofB(x) the series reduces to known functions (McGrady and Ziff 1987).

For the asymptotic solution consider the distribution of ln(X). The expectation of ln(X)
is lnµ, whereµ is the geometric mean ofX, and the variance of ln(X) is ln2 σ , whereσ
is the geometric standard deviation ofX. These are obtained fromG(p) as

lnµ = ∂

∂p
lnG(p)|p=0 = 2L1t ln2 σ = ∂2

∂p2
lnG(p)|p=0 = 2L2t (7)



Correlations between fragment sizes in sequential fragmentation 7503

whereLn are the logarithmic moments ofB(x),

Ln =
∫ 1

0
dx lnn xB(x) = ∂n

∂pn
K(p)|p=0 n > 1. (8)

By expressingK(p) in (6) as a series ofLn, transforming to a normalized variable
and obtaining the limit of the moment generating function fort → ∞ it is seen that
the distribution of ln(X) is asymptotically normalN(lnµ, ln2 σ ). Consequentlyf (x) is
asymptotically lognormal with geometric meanµ and geometric standard deviationσ ,

fas(x) = 1

ln σ
√

2π

1

x
exp

{
− 1

2

(
ln(x/µ)

ln σ

)2}
. (9)

With variable normalization it is also possible, at least for certain special cases, to derive
an asymptotic form of (2) having (9) as solution. It follows that the multidimensional
distributions pertaining to the process are asymptotically multidimensional lognormal
distributions; their explicit form is derived below. It is probable that the condition imposed
onB(z→ x) is not necessary and that the lognormal asymptotics holds more generally for
α = 1. Cheng and Redner (1990) also obtained lognormal small fragment behaviour for
certain scaling solutions withα(x) ∼ xλ, λ > 0; for this case the scaling equation can be
identified as the asymptotic form of (2).

2.2. Evolution equation for the distribution of two adjacent fragments

It is assumed that theY -fragment is always on the same side of theX-fragment so that the
number of fragments equals that of the fragment pairs for largeN (strictly: isN + 1). The
equation governing the time change of the fragment pair distributionN(t)f (x, y; t) is

∂

∂t
Nf (x, y) = N

∫ 1

x

dz α(z)f (z, y)B(z→ x)

+N
∫ 1

y

dz α(z)f (x, z)B(z→ y)+Nα(x + y)f (x + y)B(x + y → y)

−N(α(x)+ α(y))f (x, y) (10)

where the terms on the right-hand side are: the rate of creation of(x, y)-pairs from(z, y)-
pairs, the rate of creation of(x, y)-pairs from(x, z)-pairs, the rate or creation of(x, y)-pairs
from (x + y)-fragments, and the rate of annihilation of(x, y)-pairs.

2.3. Asymptotic solution forα = 1

Assume again thatα = 1, B(z → x) dx ≡ B(x/z)(dx/z), and define the two-dimensional
transform

G(p, q) =
∫ 1

0
dx xp

∫ 1

0
dy yqf (x, y). (11)

The left-hand side and the last term on the right-hand side of (10) transform directly.
Applying to the first term on the right-hand side and using the convolution property and (1)
producesNG(p, q)D(p). The second term is transformed similarly. Taking into account
that x + y 6 1 must apply, the third term is developed as

N

∫ 1

0
dx xp

∫ 1−x

0
dy yqf (x + y)B

(
x

x + y
)

1

x + y
= N

∫ 1

0
dx xp+q

∫ 1

x

dy

(
y

x
− 1

)q
f (y)B

(
x

y

)
1

y
= NG(p + q)E(p, q) (12)
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where

E(p, q) =
∫ 1

0
dx xp(1− x)qB(x). (13)

The equation for the transformG(p, q) is

∂

∂t
NG(p, q) = N(K(p)+K(q))G(p, q)+NG(p + q)E(p, q). (14)

Taking into accountG(p + q) = exp(2K(p + q)t) and N = exp(t), (6), the solution
satisfying the necessary conditionG(0, 0) = 1 is

G(p, q) = E(p, q)exp{2K(p + q)t}
2K(p + q)−K(p)−K(q)+ 1

. (15)

For the derivation of the lognormal limit distribution write (15) first as a single exponential.
The terms in the exponent are expanded as a series of theLn, (8):

lnE(p, q) = 1+ (p + q)L1+ 1
2(p

2+ q2)(L2− L2
1)+ pq(ε − L2

1)+ · · ·
ln(K(p + q)−K(p)−K(q)+ 1) = 1+ (p + q)L1+ 1

2(p
2+ q2)(L2− L2

1)

+pq(2L2− L2
1)+ · · ·

2tK(p + q) = 2t ((p + q)L1+ 1
2(p + q)2L2+ · · ·). (16)

Here

ε =
∫ 1

0
dx ln(x) ln(1− x)B(x). (17)

Insertion to (18) gives

G(p, q) = exp{pq(ε − 2L2)+ 2t (p + q)L1+ 2t (p + q)2L2+ · · ·} (18)

and changing to normalized variables

ln x∗ = ln x − lnµ

ln σ
= ln x − 2L1t√

2L2t
ln y∗ = ln y − 2L1t√

2L2t
(19)

changes the transform to

G∗(p, q) = exp

{
2L1t√
2L2t

(p + q)
}
G

(
p√
2L2t

,
q√

2L2t

)
= exp

{
1

2
(p2+ q2+ 2ρpq)+O

(
1√
t

)}
. (20)

Taking the limitt →∞ one obtains the transform ofN(ln x, ln y, 0, 1; ρ), the symmetric
bivariate normal distribution with correlationρ and marginal distribution expectation and
standard deviation 0 and 1, respectively. This establishes the result. The correlation is
explicitly

ρ = ε + 2L2(t − 1)

2L2t
. (21)

That this is identical to the correlation of the exact solutionf (x, y) of (11) can be checked
from (15) by the definition

ρ = E(ln x ln y)− ln2µ

ln2 σ
= 1

ln2 σ

∂2

∂p∂q
lnG(p, q)|p=q=0. (22)
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Scaling back by (17), the asymptotic distribution of(X, Y ) is a bivariate lognormal
distribution

fas(x, y) = 1

2π ln2 σ
√

1− ρ2

1

xy

× exp

{
− 1

2 ln2 σ
√

1− ρ2
(ln2 x/µ− 2ρ ln x/µ ln y/µ+ ln2 y/µ)

}
. (23)

It should be noted thatρ = ρlnX,lnY is not the correlation of (X, Y ) but of (ln(X), ln(Y )).
The correlation of (X, Y ) can be written down from (15) as

ρX,Y = G(1, 1)−G(1)2
G(2)−G(1)2 =

(
E(1, 1)

2+ 2K(2)
− exp{−(2+ 2K(2))t}

)
×(1− exp{−(2+ 2K(2))t})−1 (24)

sinceK(1) = −1/2 for binary fragmentation. However, this has no simple general relation
with ρ.

2.4. Conditional distributions

The conditional distributions (1) are from (23) and (9)

fas(y|X = x) = 1

ln σ
√

2π(1− ρ2)

1

x
exp

{
− 1

2(1− ρ2)

(
ln(yµρ−1/xρ)

ln σ

)2}
(25)

and the geometric expectation and geometric standard deviation conditioned on the sizex of

the adjacent fragment areµx = xρ/µρ−1 andσx = σ
√

1−ρ2
, respectively. The expectation

conditioned on the adjacent fragment sizex is

mx = xρ

µρ−1
exp

{
1

2
ln2 σ
√

1−ρ2

}
. (26)

2.5. The general case

Equation (10) generalized ton successive adjacent fragments,

∂

∂t
Nfn(x1, x2, . . . , xn) = N

∫ 1

x1

dz α(z)fn(z, x2, . . . , xn)B(z→ x1)

+N
∫ 1

xn

dz α(z)f (x1, x2, . . . , xn−1, z)B(z→ xn)

+N
n−1∑
i=1

α(xi + xn−i )fn−1(x1, . . . , xi−1, xi + xi+1, xi+2, . . . , xn)

−N
( n∑
i=1

α(xi)

)
fn(x1, x2, . . . , xn) (27)

yields, in ann-dimensional analogue of transform (11), the equation

∂

∂t
NGn(p1, p2, . . . , pn) = NGn(p1p2, . . . , pn)(K(p1)+K(pn)− n+ 2)

+N
n−1∑
j=1

Gn−1(p1, . . . , pi−1, pi + pi+1, pi+2, . . . , pn)E(pi + pi+1). (28)



7506 M Lensu

The solution of anyGn can be obtained iteratively by starting fromG2 = G(p1, p2).
However, the relevant solutions for the limit consideration are those withp2 = · · · =
pn−1 = 0. These satisfy the recurrence relation

Gn(p1, 0, . . . ,0, pn) = K(p1)+K(pn)+ n− 1

2K(p1+ pn)−K(p1)−K(pn)+ n− 1
Gn−1(p1, 0, . . . ,0, pn).

(29)

Applying (22) the correlationsρn for two fragments separated byn − 2 intermediate
fragments are given by the recurrence relationρn = ρn−1 − 1/t (n − 1) or, when iterating
from ρ2 = ρ, (21),

ρn = 1+ ε

2L2t
− 1

t

n−1∑
j=1

1

j
. (30)

The correlationsρn = ρlnX1,lnXn determine the limit distribution offn(x1, x2, . . . , xn)

which is an n-dimensional lognormal distribution for which the correlation matrix of
the corresponding normal distribution can be written in terms of (30). The correlations
ρX1,Xn , n > 2, can be obtained from (24) with the recurrence relation

Gn(1, 0, . . . ,0, 1) = n− 2

n+ 2K(2)
Gn−1(1, 0, . . . ,0, 1). (31)

3. Discussion and conclusion

For the two simplest casesB(x) = 1 (random placement of the cut) andB(x) =
δ(x − 1/2) (fragmentation into equal halves) the values of{ε, L2,K(2), E(1, 1)} are
{2− π2/6, 2,−2/3, 1/6} and {ln2 2, ln2 2,−3/4, 1/4}, respectively. It is seen from (35)
that the correlationsρn approach unity rapidly with increasingt = ln(N). On the other
hand, asK(2) > −1 it is seen from (24) and (31) that for larget the correlationsρX1,Xn

approach the value

E(1, 1)

2+ 2K(2)

n∏
j=3

j − 2

j + 2K(2)
. (32)

Thus in the limit of larget the first values ofρX1,X2, ρX1,X3, ρX1,X4, . . . for B(x) = 1 and
B(x) = δ(x− 1

2) are 1/4, 3/20, 9/80, 81/880,. . . and 1/2, 1/3, 4/15, 8/35, . . . respectively.
For the caseB(x) = δ(x − 1

2) the size of a fragment is( 1
2)
k, wherek is the number of

fragmentations. This gives by a variable change inf (x, y) the distributionf (k1, k2) = Prob
(X has fragmentedk1 times andY has fragmentedk2 times). This and then-dimensional
version are asymptotically multinormal distributions.

As the correlationsρn andρX1,Xn were obtained from the transformsGn of the exact
solutions of the equations (10) and (27) the results established for them are generally valid.
No restrictions were imposed onB(x) and non-vanishing correlations were found whenever
α = 1. Asymptotically vanishing correlations are possible for other choices of parameter
α(x); this is at least the case forα(x) = x andB(x) = 1 which defines a spatial Poisson
process restricted to [0, 1]. Any multidimensional initial distribution can be taken into
account by multiplyingGn by the transformG0 of the initial distribution; the lognormality
of the limit distribution is not affected by the initial distribution. The generalization of (10)
and (27) to describe a process where the number of progenym is larger than 2 is formally
straightforward by reformulating the equations in terms of adjacentm-tuples of fragments.
The results suggest also new methods for the exact treatment of two- and three-dimensional
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fragmentation-generated cellular structures (Delannay and Le Caer 1994). The transition
to spatial dimensions higher than one is non-trivial as fragments are not arranged into a
sequence where each fragment has only one adjacent fragment on each side. The number of
fragments adjacent to a given fragment will depend both on the geometry of the fragments
and on probabilitiesB(y → x). This necessitates a tailored formulation of (27) or a method
of ordering the fragments in the structure, that is, the specification of a mapping to the
one-dimensional analogue.
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