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Correlations between fragment sizes in sequential
fragmentation
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Abstract. Size correlations in a sequential fragmentation process originate from the correlations
the progeny of a single fragmentation event necessarily have. A multidimensional equation
describing the binary fragmentation of a unit segment is formulated. The fragments are assumed
to keep their positions with respect to the original segment. If the fragmentation rate is
not dependent on fragment size the distributiffixy, x2, ..., x,) for n successive adjacent
fragments is shown to asymptotically approach raimensional log-normal distribution.
Explicit forms of the asymptotic distribution and the correlations are given in terms of the
parameters oB(y — x), the probability that a fragmentation event with parent sizgoduces
progeny sizex.

1. Introduction

Fragmentation processes are ubiquitous in physics and are encountered in such fields as
dispersion, turbulent mixing, polymer chemistry, crushing and grinding of minerals, aerosol
behaviour, nuclear physics and astronomy (Ramkrishna 1985, Mekijan and Lee 1991). The
associated linear fragmentation equation has been extensively studied and various analytical
solutions have been obtained (McGrady and ziff 1987, Ziff 1991, Hassan and Rodgers 1995,
Cheng and Redner 1990). For a fragment size independent fragmentation rate the solutions
are known or suspected to approach asymptotically a lognormal distribution (Epstein 1947,
Delannayet al 1996, Bakeret al 1992). The log-normality is expected to be largely
independent of the form of the probabilit(y — x) for producing x-fragments from
y-fragments. This makes the lognormal distribution particularly suitable for modelling
empirical fragment size distributions.

If there is no mass loss then in a fragmentation event the sizes of the progeny fragments
are necessarily correlated as their sum must equal the size of the parent fragment. For
binary fragmentation the correlations are deterministic as the sizes of the progeny for a
parent sizey arex andy — x. If the fragments are free to move around the correlations
have little relevance. However, if they have fixed positions, a specific geometry or cellular
structure is generated and correlations between a fragment and its neighbours are expected.
This situation is also often encountered in fragmentation phenomena, especially in the
fragmentation of solids where generation of crack surfaces and the associated change in
material properties are often in question.
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2. The distribution of adjacent fragments

2.1. Preliminaries

The model to be presented generalizes the usual population balance or rate equation approach
to describe arrangements of adjacent fragments. This is done in an iterative fashion starting
from a theory of two adjacent fragments. An unit segment is fragmented sequentially into

N (¢) fragments that are assumed to keep their positions. The distribution of a random vector
(X,Y) whereX andY are the sizes of adjacent fragmentsfiér, y) dx dy = Probx <

X <x+dx andy < Y < y+dy). The distribution is assumed to by symmetric so that the
ordinary fragment size distribution is(x) = fol dy f(x, y) and the conditional distribution

fx,y)
YIX =x) = ) 1
fol o) (1)
The distributionf, (x1, x2, . .., x,) for n successive adjacent fragments is defined as an
obvious generalization. The population balance equation for the distribgitionis
9 1
SNF) = N2 / dc 2(2) (@) Bz — x) — Na(x) £ () @

where a(x,t) is the fragmentation rate an#(z — x)dx is the probability for a
fragmentation event with parent siz€o produce progeny size. It is assumed that = 1
and that the fragmentation pattern is size independem(er— x)dx = B(x/z)(dx/z).
Here B(y) dy is a probability distribution defined for & y < 1. Applying to (2) the
transform

1 1
G(P)=/O dx x? f (x) D(p)=/o dx x” B(x) (3
one obtains
0
5NG(17) = N2G(p)D(p) — G(p) = NG(p)(2K(p) +1) (4)

whereK (p) = D(p)—1. Itis seen thaG (p) is the Laplace transform of the distribution of
In(1/X) or the moment generating function of the distribution afX; thus a convolution
property derivable from that of Laplace transforms applies. With) = 1 andK (0) =0
two equations are obtained from (4),

0 dn

ot G(p) (P)G(p) o N (5)
and the solution for any initial distributiorip(x) with the transformGo(p) atz =0 is

G(p) = Go(p)&XP" N = No€. ©)

It can be assumed thé&iy(p) = 1 and Ny = 1 since the complete solution can always be
derived as a convolution integral. The solutigix) for any B(x) can formally be written
down as a series where thi¢h term contains &-fold convolution integral; for certain
choices ofB(x) the series reduces to known functions (McGrady and Ziff 1987).

For the asymptotic solution consider the distribution @i The expectation of ifX)
is In, wherep is the geometric mean of, and the variance of liX) is In® o, whereo
is the geometric standard deviation X¥f These are obtained froii(p) as
np="1InG = 2Lt |2—32|G =2L 7
N =g ING(p)lp—0 = 2L1 "o =32 NGP)—0=2Lat  (7)
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whereL, are the logarithmic moments d@f(x),

n

1
L= [ deinxBe = O Ko a1 (®)
0 ap"

By expressingK(p) in (6) as a series ofL,, transforming to a normalized variable
and obtaining the limit of the moment generating function for> oo it is seen that
the distribution of IiX) is asymptotically normalV (In ., In?s). Consequentlyf (x) is
asymptotically lognormal with geometric meanand geometric standard deviatien

11 1/In(x/p)\>
faS(x)_erXp{_Z( no )} 9

With variable normalization it is also possible, at least for certain special cases, to derive
an asymptotic form of (2) having (9) as solution. It follows that the multidimensional
distributions pertaining to the process are asymptotically multidimensional lognormal
distributions; their explicit form is derived below. It is probable that the condition imposed
on B(z — x) is not necessary and that the lognormal asymptotics holds more generally for
a = 1. Cheng and Redner (1990) also obtained lognormal small fragment behaviour for
certain scaling solutions with(x) ~ x*, » > 0; for this case the scaling equation can be
identified as the asymptotic form of (2).

2.2. Evolution equation for the distribution of two adjacent fragments

It is assumed that thE-fragment is always on the same side of ftidragment so that the
number of fragments equals that of the fragment pairs for lardgstrictly: is N +1). The
equation governing the time change of the fragment pair distributian f (x, y; r) is

1
%Nf(x, y) = N/ dz a(z) f(z, y)B(z = x)

1
+N/ dza(z) f(x,2)B(z = y) + Na(x +y) f(x + B +y = y)

y
—N(a(x) +a(y) f(x,y) (10)

where the terms on the right-hand side are: the rate of creation, 9f-pairs from(z, y)-

pairs, the rate of creation 6%, y)-pairs from(x, z)-pairs, the rate or creation ¢f, y)-pairs

from (x + y)-fragments, and the rate of annihilation @f, y)-pairs.

2.3. Asymptotic solution far = 1

Assume again that = 1, B(z — x)dx = B(x/z)(dx/z), and define the two-dimensional
transform

1 1
G(p,q)=/0 dxxpfo dy y? f(x, y). (11)

The left-hand side and the last term on the right-hand side of (10) transform directly.
Applying to the first term on the right-hand side and using the convolution property and (1)
producesNG(p, g)D(p). The second term is transformed similarly. Taking into account
thatx + y < 1 must apply, the third term is developed as

1 1—x X 1
N dx x? dy y? +y)B
/O x /O y y f(x +y) <x+y>x+y

1 1 y q *\1
= N/ dxx”+"f dy < — 1) f(y)B<> =NG(p+q9E(p.q) (12)
0 x X y/y
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where

E(p,q) = /Oldxx”(l—x)"B(x). (13)
The equation for the transfori@(p, q) is

%NG(p, q) =N(K(p)+K(@)G(p,q)+ NG(p+qE(p,q). (14)

Taking into accountG(p + q) = exp(2K(p + ¢)t) and N = exp(r), (6), the solution
satisfying the necessary conditian(0, 0) = 1 is
E(p,q) exp2K (p + q)1}

D= Sk p+a) - Kp)— K@ +1 (19)

For the derivation of the lognormal limit distribution write (15) first as a single exponential.
The terms in the exponent are expanded as a series df,th):

INE(p.q) =1+ (p+q)L1+ 5(p* +¢*) (Lo — L) + pg(e — L) + -+

INK(p+q)—K(p) =K@+ =1+ (p+q)L1+ 3(p* + ) (Lo — L?)
+pq(2Ly — L3) + - --

2K(p+q)=2((p+q)L1+ 35(p+q)°La+ ). (16)

Here
1
&= / dx In(x) In(1 — x)B(x). a7)
0
Insertion to (18) gives

G(p,q) = explpq(e —2Ly) + 2t (p+q)L1+ 2t (p+q)°La+---}  (18)

and changing to normalized variables

Inx —Inp Inx — 2Lyt Iny — 2Lt
Inx* = = Iny*= —__—— 19
* Ino 2Lt Y V2L ot ( )
changes the transform to
G*(p, q) = ex { 2Lat (4 )}G( P 4 )
PO=E0 Jarg P " 2o Vara
7+ ()}
=expl=(p°+q°+2 +0Ol —)¢t. 20
p{z(p q pPq) i (20)

Taking the limitr — oo one obtains the transform &f(In x, In y, 0, 1; p), the symmetric
bivariate normal distribution with correlation and marginal distribution expectation and
standard deviation 0 and 1, respectively. This establishes the result. The correlation is
explicitly

e+ 2L,(t — 1)

o 2Lt '
That this is identical to the correlation of the exact solutjoix, y) of (11) can be checked
from (15) by the definition

(21)

_E(nxlny)—Inp 1 92
- In?o " In?0 dpdgq

InG(p, ¢)|p=g=0- (22)
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Scaling back by (17), the asymptotic distribution @X,Y) is a bivariate lognormal
distribution

1 1
-x9 )2—7
Jadivoy annZGMxy
1
xexp] — ———  (n®x/u—2plnx/uin +1In2 )}. 23
p{ 2|n20m( /w—=2pInx/pIny/u+In"y/p (23)

It should be noted that = pinx.iny IS nNot the correlation of X, Y) but of (In(X), In(Y)).
The correlation of X, Y) can be written down from (15) as

G(LD)-G®D? [ EQLD
G2 - G2 <2 +2K@2) expi—(2+ 2K(2)>t}>
x(1—exp{—(2+2K(2)) ! (24)

Px,y =

sinceK (1) = —1/2 for binary fragmentation. However, this has no simple general relation
with p.

2.4. Conditional distributions

The conditional distributions (1) are from (23) and (9)

1 1 1 |n(y;w—1/xp))2}
as! X = = — 25
Lt ) Ino\/27(1l— p?) x eXp{ 2(1-p?) ( Ino (29)

and the geometric expectation and geometric standard deviation conditioned on thefsize

the adjacent fragment aye, = x*/u”~! ando, = oV *°, respectively. The expectation
conditioned on the adjacent fragment sizés

p
m, = — exp{;lnzovl"z}. (26)

Pt

2.5. The general case

Equation (10) generalized to successive adjacent fragments,

9 1

aan(xl, X2, o0y Xp) = N/ dz a(2) fu(z, x2, ..., X)) B(z = x1)

X1
1

+N | dza(z)f(x1,x2, ..., Xn—1,2)B(z = x,)

n—1
AN Yl + X ) o2 (VL - X1 X Xig 1 Xig2e e X)
i—1

—N< a(xi)>fn(x1,xz, s Xn) (27)
i=1
yields, in ann-dimensional analogue of transform (11), the equation

3
ENGn(pl, P2, .-y Pn) = NGu(p1p2, ..., p)(K(p1) + K(py) —n+2)
n—1

+N ) Gu-1(p1,..., pi-1, Pi + Pit1s Piv2s - --» P)E(pi + piz1). (28)
=
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The solution of anyG, can be obtained iteratively by starting froG, = G(p1, p2)-
However, the relevant solutions for the limit consideration are those with= ... =
pn—1 = 0. These satisfy the recurrence relation
K(p1)+K(p,) +n—1
2K(p1+ pn) — K(p1) — K(py) +n—1

Gn(Pl: 0,...,0, pn) = Gn—l(Pl: 0,...,0, pn)

(29)
Applying (22) the correlations, for two fragments separated by — 2 intermediate

fragments are given by the recurrence relatign= p,_1 — 1/t(n — 1) or, when iterating
from p; = p, (21),

e 1211
on=14_-— —- ~. (30)
" 2Lt t ; ]
The correlationsp, = pinx,inx, determine the limit distribution off, (x1, x2, ..., x,)

which is ann-dimensional lognormal distribution for which the correlation matrix of
the corresponding normal distribution can be written in terms of (30). The correlations
Pxy.x,, 1 > 2, can be obtained from (24) with the recurrence relation

n—2
G,1,0,...,0,1 = mGn,l(l, 0,...,0, 1. (31)

3. Discussion and conclusion

For the two simplest case8(x) = 1 (random placement of the cut) anBl(x) =
8(x — 1/2) (fragmentation into equal halves) the values {ef L,, K(2), E(1, 1)} are
{2 —72/6,2,—-2/3,1/6} and {In?2, In?>2, —3/4, 1/4}, respectively. It is seen from (35)
that the correlationg, approach unity rapidly with increasing= In(N). On the other
hand, ask(2) > —1 it is seen from (24) and (31) that for largethe correlationsoy, x,
approach the value

E1, 1) 1_[ j—2

2+2k@ L2k (32)

j=3
Thus in the limit of larger the first values ofx, x,, 0x,.xs» Ox1.x4» - - - Or B(x) = 1 and

B(x) = S(x—%) are 14, 3/20, 980, 81/880,...and 12, 1/3, 4/15, 8/35,. ... respectively.

For the caseB(x) = §(x — %) the size of a fragment is%)k, wherek is the number of
fragmentations. This gives by a variable chang¢ im, y) the distributionf (k1, k) = Prob

(X has fragmented; times andY has fragmented, times). This and the-dimensional
version are asymptotically multinormal distributions.

As the correlationsg, and px, x, were obtained from the transforngs, of the exact
solutions of the equations (10) and (27) the results established for them are generally valid.
No restrictions were imposed d®(x) and non-vanishing correlations were found whenever
a = 1. Asymptotically vanishing correlations are possible for other choices of parameter
a(x); this is at least the case far(x) = x and B(x) = 1 which defines a spatial Poisson
process restricted to [Q]. Any multidimensional initial distribution can be taken into
account by multiplyingG, by the transformGg of the initial distribution; the lognormality
of the limit distribution is not affected by the initial distribution. The generalization of (10)
and (27) to describe a process where the number of progeisylarger than 2 is formally
straightforward by reformulating the equations in terms of adjagetiples of fragments.

The results suggest also new methods for the exact treatment of two- and three-dimensional
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fragmentation-generated cellular structures (Delannay and Le Caer 1994). The transition
to spatial dimensions higher than one is non-trivial as fragments are not arranged into a
sequence where each fragment has only one adjacent fragment on each side. The number of
fragments adjacent to a given fragment will depend both on the geometry of the fragments
and on probabilitied(y — x). This necessitates a tailored formulation of (27) or a method

of ordering the fragments in the structure, that is, the specification of a mapping to the
one-dimensional analogue.
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